MATH 3060 Tutorial 1

Chan Ki Fung

September 21, 2022

- 1. True or false:
 - (a) A 2π -periodic continuous function on \mathbb{R} is uniformly continuous. T
 - (b) Any continuous function $f:[0,1]\to\mathbb{R}$ is Riemann integrable on [0,1]. **T**
 - (c) Let $f, g : [0, 1] \to \mathbb{R}$ be Riemann integrable functions on [0, 1], then the product fg is also Riemann integrable on [0, 1]. **T**
 - (d) Let $f:[0,1] \to \mathbb{R}$ with f(0) = 0, and

$$f(x) = \frac{1}{\sqrt{x}}$$

for $x \neq 0$. Then f is Riemann integrable on [0,1] with $\int_0^1 f = 2$, but f^2 is not Riemann integrable on [0,1]. **F**

2. Find the Fourier coefficients a_n, b_n, c_n of the 2π periodic function f with

$$f(x) = \sin\frac{x}{2}$$

for $x \in (-\pi, \pi]$.

3. (a) Let f_1 be the 1-periodic extension of the function $x - \frac{1}{2}$ on [0, 1], show that

$$f_1(x) \sim -\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin(2n\pi x)$$

(b) Let f_2 be the 1-periodic extension of the function $\frac{x^2}{2} - \frac{x}{2} + \frac{1}{12}$ on [0,1], show that

$$f(x) \sim \frac{1}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos(2n\pi x)$$

(c) Can you find a 1-periodic function f with

$$f(x) \sim \sum_{n=1}^{\infty} \frac{1}{n^4} \cos(2n\pi x)$$

4. Let f,g be 1-periodic functions integrable on [0,1] with $\int_0^1 g(t)dt=0$. Imitate the proof of the Riemann Lebesgue lemma, show that

$$\lim_{n \to \infty} \int_0^1 f(t)g(nt)dt = 0$$